DISCRETE ω-SEQUENCES OF INDEX SETS(1)

BY

LOUISE HAY

ABSTRACT. We define a discrete ω -sequence of index sets to be a sequence $\{\theta A_n\}_{n\geq 0}$ of index sets of classes of recursively enumerable sets, such that for each n, θA_{n+1} is an immediate successor of θA_n in the partial order of degrees of index sets under one-one reducibility. The main result of this paper is that if S is any set to which the complete set K is not Turing-reducible, and A^S is the class of recursively enumerable subsets of S, then θA^S is at the bottom of c discrete ω -sequences. It follows that every complete Turing degree contains c discrete ω -sequences.

Introduction. Let $\{W_x\}_{x\geq 0}$ be a standard enumeration of all recursively enumerable (r.e.) sets. If A is any collection of r.e. sets, the *index set* of A is $\{x\mid W_x\in A\}$ and is denoted by θA . If $\{A_n\}_{n\geq 0}$ is a sequence of classes of r.e. sets, call the sequence $\{\theta A_n\}_{n\geq 0}$ a discrete ω -sequence of index sets if

- (a) $\theta A_n < \theta A_{n+1}$ for each n, and
- (b) for every class B of r.e. sets, $\theta A_n \leq_1 \theta B \leq_1 \theta A_{n+1}$ implies $\theta B \cong \theta A_n$ or $\theta B \cong \theta A_{n+1}$.

That discrete ω -sequences exist was proved in [3]; it was shown there that if $\{Z_m\}_{m\geq 0}$ is the sequence of index sets of nonempty finite classes of finite sets (classified in [4] and, independently, in [2]), then $\{Z_m\}_{m\geq 0}$ is a discrete ω -sequence of index sets. Moreover, it easily follows from the results in [3] that the c nonisomorphic sequences $\{Y_m\}_{m\geq 0}$ satisfying $Y_m=Z_m$ or \overline{Z}_m for each m are discrete ω -sequences of index sets. In this paper it is shown that discrete ω -sequences of index sets occur in great profusion. The fact that the sets Z_m are index sets of finite classes of finite sets appears not to be relevant; what generalizes is the fact that $Z_0=\theta\{\varnothing\}\cong\{x\mid W_x\subseteq S\}$, where S is any co-r.e. set. The main results are as follows: (1) if $K\not\succeq_T S$ (where K denotes Post's complete set) and $A^S=\{W_x\mid W_x\subseteq S\}$, then θA^S and $\overline{\theta A^S}$ are at the bottom of c discrete ω -se-

Received by the editors December 13, 1971.

AMS (MOS) subject classifications (1970). Primary 02F25; Secondary 02F30.

Key words and phrases. Index sets, classes of recursively enumerable sets, one-one reducibility, complete degrees.

(1) Research supported by National Science Foundation Grant GP-19958. Presented to the Special Session on Recursion Theory at the November 27, 1971 meeting of the American Mathematical Society at Milwaukee, Wisconsin.

quences of index sets; (2) every Turing degree a>0' contains c discrete ω -sequences; (3) 0' contains c discrete ω -sequences containing no sets recursively isomorphic to Z_m or \overline{Z}_m for any m. We also prove a conjecture made in [3] that there exist sequences $\{\theta A_m\}_{m\geq 0}$ satisfying $Z_m<_1\theta A_m$ and $\overline{Z}_m\not\leq_1\theta A_m$, for each $m\geq 0$.

Notation. The terminology and notation is that of [6]. K denotes the complete set = $\{x \mid x \in W_x\}$. N denotes the set of natural numbers. For X, $Y \subseteq N$, $X \times Y$ denotes the recursive Cartesian product, via an effective pairing function (x, y) whose inverses are denoted by π_1 , π_2 ; thus $z = (\pi_1(z), \pi_2(z)) \cdot \{D_n\}_{n \ge 0}$ is the canonical indexing of finite subsets of N, with $D_0 = \emptyset$. For X, $Y \subseteq N$, $X \subseteq Y$ means X is one-one reducible to Y. If $X \subseteq Y$ and $Y \subseteq X$, we invoke Myhill's isomorphism theorem [5] and write $X \cong Y$. $X \subseteq_T Y$ means X is Turing reducible to Y. $X \mid Y$ means X and Y are 1-1 incomparable.

0. Required previous results. We list here for more convenient reference some results of [3] which will be needed. The proofs can be found in [3]. In that paper, for each m > 0, $f_m: N^m \to N$ denotes a recursive one-one onto map with recursive inverses denoted by x_i^m , $0 \le i \le m$; i.e., $x = f_m(x_0^m, \dots, x_{m-1}^m)$. For $m = 1, f_1$ is the identity and $x_0^1 = x$.

Lemma 0.1 (Lemma 10 of [3]). If \overline{A} is nonempty, then

(a)
$$N \in A \longrightarrow K \leq \theta A$$
,

(b)
$$\emptyset \in A \rightarrow \overline{K} < \theta A$$
.

Definition 0.2 (Definitions 1, 2 of [3]). For each x, let

$$k_m(x) = \text{cardinality}\{i \mid x_i^{m+1} \in K\}.$$

For each $n \geq 0$, let

$$Z_{2n} = \{x \mid k_{2n}(x) \text{ is even}\}, \qquad Z_{2n+1} = \{x \mid k_{2n+1}(x) \text{ is odd}\}.$$

Note that since $x = f_1(x)$, $x \in Z_0 \leftrightarrow x \notin K$, so that $Z_0 = \overline{K}$.

Lemma 0.3 (Theorem 2 of [3]). For all $n \ge 0$,

(a)
$$Z_{n+1} \cong \overline{K} \times \overline{Z}_n$$
,

(b)
$$Z_{2n+1}^{n+1} \cong K \times Z_{2n}^{n}$$
,

(c)
$$\overline{Z}_{2n+2} \cong K \times \overline{Z}_{2n+1}$$
.

Lemma 0.4 (Theorem 3(a), (b), (c) of [3]). For all $m \ge 0$,

(a)
$$Z_m < Z_{m+1}, \ \overline{Z}_m < \overline{Z}_{m+1},$$

(b)
$$Z_m < \overline{Z}_{m+1}, \overline{Z}_m < Z_{m+1},$$

(c)
$$Z_m \mid \overline{Z}_m$$
.

Lemma 0.5 (From Theorem 5 of [3]). For all n > 0,

- (a) if $\theta A \cong Z_n$ then $N \notin A$,
- (b) if $\theta A \cong \overline{Z}_{2n}$ then $\emptyset \notin A$,
- (c) if $\theta A \cong \overline{Z}_{2n+1}$ then $\emptyset \in A$.

Lemma 0.6 (Theorem 3(d), (e) of [3]). For all $m \ge 0$,

- (a) there is no A satisfying $Z_m < \theta A < Z_{m+1}$ or $\overline{Z}_m < \theta A < \overline{Z}_{m+1}$, (b) there is no A satisfying $\overline{Z}_m < \theta A < Z_{m+1}$ or $Z_m < \theta A < \overline{Z}_{m+1}$.

Lemma 0.7 (Lemma 13 of [3]). If $\theta A < K \times \theta B$ and $\emptyset \in A$, then $\theta A < \theta B$.

Lemma 0.8 (Lemma 14 of [3]). If $\theta A < \overline{K} \times \theta B$ and $N \in A$, then $\theta A < \theta B$.

Lemma 0.9 (Lemma 15 of [3]). If $\theta A \leq \theta B \leq K \times \theta A$, then $\theta B \cong \theta A$ or $\theta B \cong \theta A$

Lemma 0.10 (Lemma 16 of [3]). If $\theta A \leq \theta B \leq \overline{K} \times \theta A$, then $\theta B \cong \theta A$ or $\theta B \cong \theta A$ $\overline{K} \times \theta A$.

Lemma 0.11 (Lemma 9 of [3]). For all A, $\theta A \not\cong \theta \overline{A}$.

1. Index sequences.

Definition 1.1. Let $l_n = \{0, 1, \dots, n\}, n \ge 0, J = \{0, \overline{0}, 1, \overline{1}, 2, \overline{2}\}$ where $\overline{0}$, $\overline{1},\,\overline{2}$ are formal symbols introduced for notational purposes. An index sequence σ is any function $\sigma: I_n \to J$ such that

- (a) $\sigma(0) \in \{0, \overline{0}\},$
- (b) $\sigma(i) \in \{1, \overline{1}, 2, \overline{2}\}$ for $0 < i \le n$.

If σ is an index sequence and domain $\sigma = l_n$, σ has length n + 1, denoted by l_{σ} . In the following, σ will be freely identified with the concatenation $\sigma(0)*\sigma(1)$ * ... * $\sigma(l_{\sigma}-1)$ and $\sigma*i$ will be abbreviated to σi , $i=1,\overline{1},2,\overline{2}$. In this notation, it is clear that $0, \overline{0}$ are index sequences, and that σi is an index sequence $\leftrightarrow \sigma$ is an index sequence and $i = 1, \overline{1}, 2, \overline{2}$.

Definition 1.2. If σ is an index sequence, its complementary sequence $ar{\sigma}$ is defined inductively as follows:

- (a) 0, $\overline{0}$ are complementary,
- (b) $\sigma 1$ and $\overline{\sigma} \overline{1}$ are complementary,
- (c) σ^2 and $\overline{\sigma}^2$ are complementary.

It is easily seen by induction on l_{σ} that $\overline{\overline{\sigma}} = \sigma$ for all index sequences σ .

Definition 1.3. Suppose S is an infinite subset of N, $S = \{s_0, s_1, ...\}$ in any order, $s_i \neq s_j$ for $i \neq j$. For each index sequence σ , define a corresponding class A_{σ}^{S} of r.e. sets inductively on length σ , as follows:

296

(a)
$$A_0^S = \{ W_x \mid W_x \subseteq S \},$$

(b)
$$A\frac{S}{\sigma} = \overline{A\frac{S}{\sigma}}$$
,

(c) if σ has length i+1, i>0,

$$A_{\sigma 1}^{S} = \{ W_{x} | s_{i} \in W_{x} \text{ and } W_{x} \in A_{\sigma}^{S} \},$$

$$A_{\sigma 2}^{S} = \{W_x | s_i \notin W_x \text{ and } W_x \in A_{\sigma}^{S}\}.$$

Note that $A_{\sigma_1}^S$, $A_{\sigma_2}^S \subseteq A_{\sigma}^S$ for all σ , S.

Remark. The classes A_{σ}^{S} are defined relative to a given enumeration of S. The notation makes no explicit reference to the enumeration, since it will shortly be shown that the index sets θA_{σ}^{S} corresponding to a given σ are unique up to recursive isomorphism.

Lemma 1.4. Let A be any class of r.e. sets, and let $s \in N$. Then

(a) if
$$A_1 = \{x \mid s \in W_x \text{ and } W_x \in A\}$$
 then $\theta A_1 \leq K \times \theta A$,

(b) if
$$A_2 = \{x \mid s \notin W_x \text{ and } W_x \in A\}$$
 then $\theta A_2 \leq \overline{K} \times \theta A$.

Proof. Let g(x) be a recursive function which computes the index of an r.e. set generated according to the following instructions:

$$W_{g(x)} = \emptyset$$
 if $s \notin W_x$,
= N if $s \in W_x$.

Then $g(x) \in K \leftrightarrow s \in W_x$. Let $h(x) = \langle g(x), x \rangle$. Then

$$x \in \theta A_1 \longleftrightarrow s \in W_x \text{ and } W_x \in A$$

$$\longleftrightarrow g(x) \in K \text{ and } x \in \theta A$$

$$\longleftrightarrow b(x) \in K \times \theta A,$$

and

$$x \in \theta A_2 \leftrightarrow s \notin W_x \text{ and } W_x \in A$$

$$\leftrightarrow g(x) \in \overline{K} \text{ and } x \in \theta A$$

$$\leftrightarrow b(x) \in \overline{K} \times \theta A.$$

So $\theta A_1 \leq K \times \theta A$ and $\theta A_2 \leq \overline{K} \times \theta A$, both via b. (As usual, we need not bother to make b one-one, since all sets in question are index sets and thus cylinders [6].)

Lemma 1.5. Let S be any infinite subset of N, $S = \{s_0, s_1, \dots\}$. Let $S_0 = \emptyset$, $S_i = \{s_0, s_1, \dots s_{i-1}\}$ for $i \ge 1$. If σ is an index sequence, $l_{\sigma} = i + 1$, $i \ge 0$ and T is any finite subset of $S = S_i$, then

$$W_x \in A_{\sigma}^S \longleftrightarrow W_x \cup T \in A_{\sigma}^S \longleftrightarrow W_x - T \in A_{\sigma}^S$$

Proof. By induction on *i*. It suffices to prove the result for the cases when $\sigma = 0$, $\tau 1$ or $\tau 2$. The complementary cases follow by symmetry since, e.g., $W_x \in A_{\tau 1}^S \leftrightarrow W_x \notin \overline{A_{\tau 1}^S} = A_{\tau 1}^S$. If i = 0 then $l_{\sigma} = 1$, so $\sigma = 0$ and T is any finite subset of $S - S_0 = S$. Since $A_0^S = \{W_x \mid W_x \subseteq S\}$, it is clear that

$$W_x \in A_0^S \leftrightarrow W_x \subseteq S \leftrightarrow W_x \cup T \subseteq S \leftrightarrow W_x = T \subseteq S$$
.

Now assume the lemma holds for all τ of length i+1 and let $l_{\sigma}=i+2$, $T \subseteq S-S_{i+1}$; then $\sigma=\tau 1$ or $\tau 2$ where τ has length i+1. But $S_i \subseteq S_{i+1}$ implies $T \subseteq S-S_{i+1} \subseteq S-S_i$ so, by the induction hypothesis,

$$W_x \in A_\tau^S \longleftrightarrow W_x \cup T \in A_\tau^S \longleftrightarrow W_x - T \in A_\sigma^S$$

Also, $s_i \in S_{i+1}$ implies $s_i \notin T$, so

$$s_i \in W_x \leftrightarrow s_i \in W_x \cup T \leftrightarrow s_i \in W_x - T$$

These two sets of equivalences imply

$$s_i \in W_x$$
 and $W_x \in A_\tau^S \longleftrightarrow s_i \in W_x \cup T$ and $W_x - T \in A_\tau^S$
 $\longleftrightarrow s_i \in W_x - T$ and $W_x - T \in A_\tau^S$

and

$$s_i \notin W_x$$
 and $W_x \in A_\tau^S \longleftrightarrow s_i \notin W_x \cup T$ and $W_x \cup T \in A_\tau^S$.
 $\longleftrightarrow s_i \notin W_x - T$ and $W_x - T \in A_\tau^S$.

Now if $\sigma = \tau 1$, $A_{\sigma}^{S} = \{x \mid s_{i} \in W_{x} \text{ and } W_{x} \in A_{\tau}^{S} \}$ while if $\sigma = \tau 2$, $A_{\sigma}^{S} = \{x \mid s_{i} \notin W_{x} \text{ and } W_{x} \in A_{\tau}^{S} \}$. In either case, it follows that

$$W_{x} \in A_{\sigma}^{S} \longleftrightarrow W_{x} \ \cup \ T \ \in A_{\sigma}^{S} \longleftrightarrow W_{x} - T \ \in A_{\sigma}^{S}.$$

Lemma 1.6. If S is any infinite set and σ any index sequence of length i > 0, then

$$K \times \theta A_{\sigma}^{S} \leq \theta A_{\sigma 1}^{S}$$
.

Proof. $A_{\sigma 1}^S = \{W_x \mid s_i \in W_x \text{ and } W_x \in A_{\sigma}^S\}$. Let b be a recursive function which computes the index of an r.e. set generated according to the following instructions:

Let

$$\begin{split} W_{b(x)} &= \varnothing & \text{if } '\pi_1(x) \notin K, \\ &= W_{\pi_2(x)} \cup \{s_i\} & \text{if } \pi_1(x) \in K. \end{split}$$

Then

$$\begin{split} b(x) &\in \theta A_{\sigma 1}^S \longleftrightarrow s_i \in W_{b(x)} \text{ and } W_{b(x)} \in A_{\sigma}^S \\ &\longleftrightarrow \pi_1(x) \in K \text{ and } W_{b(x)} = W_{\pi_2(x)} \cup \{s_i\} \in A_{\sigma}^S. \end{split}$$

Since $s_i \in S - S_i$, Lemma 1.5 implies that

$$W_{\pi_2(x)} \cup \{s_i\} \in A_\sigma^S \longleftrightarrow W_{\pi_2(x)} \in A_\sigma^S;$$

so $b(x) \in \theta A_{\sigma_1}^S \longleftrightarrow \pi_1(x) \in K$ and $W_{\pi_2(x)} \in A_{\sigma}^S$, and $K \times \theta A_{\sigma}^S \leq \theta A_{\sigma_1}^S$ via b.

Lemma 1.7. If S is any infinite set and σ any index sequence of length i > 0, then $\overline{K} \times \theta A_{\sigma}^{S} \leq \theta A_{\sigma}^{S}$.

Proof. $A_{\sigma 2}^S = \{W_x \mid s_i \notin W_x \text{ and } W_x \in A_{\sigma}^S\}$. Let b be a recursive function which computes the index of an r.e. set generated according to the following instructions:

$$W_{h(x)} = W_{\pi_2(x)} - \{s_i\} \text{ if } \pi_1(x) \notin K,$$

= $N \text{ if } \pi_2(x) \in K.$

Then

$$\begin{split} b(x) &\in \theta A_{\sigma 2}^S \longleftrightarrow s_i \notin W_{b(x)} \text{ and } W_{b(x)} \in A_{\sigma}^S \\ &\longleftrightarrow \pi_1(x) \notin K \text{ and } W_{b(x)} = W_{\pi_2(x)} - \{s_i\} \in A_{\sigma}^S \\ &\longleftrightarrow \pi_1(x) \notin K \text{ and } W_{\pi_2(x)} \in A_{\sigma}^S, \end{split}$$

using Lemma 1.5 as in the previous lemma. So $\overline{K} \times \theta A_{\sigma}^{S} \leq \theta A_{\sigma 2}^{S}$ via b.

Definition 1.8. If S is any infinite set and σ any index sequence, let

$$X_{\sigma}^{S} = \theta A_{\sigma}^{S}, \qquad X_{\overline{\sigma}}^{S} = \theta A_{\overline{\sigma}}^{S} = \overline{\theta A_{\sigma}^{S}} = \overline{X_{\sigma}^{S}}.$$

Lemma 1.9. For all infinite sets S and all index sequences σ ,

(a)
$$X_{\sigma_1}^S \cong K \times X_{\sigma}^S$$
,

(b)
$$X_{\sigma_2}^S \cong \overline{K} \times X_{\sigma}^S$$
,

(c)
$$X_{\sigma}^{S} \leq X_{\sigma i}^{S}$$
, $i = 1, \overline{1}, 2, \overline{2}$.

Proof. By the definitions of $A_{\sigma_1}^S$ and $A_{\sigma_2}^S$, Lemma 1.4 implies $X_{\sigma_1}^S \leq K \times X_{\sigma}^S$ and $X_{\sigma_2}^S \leq \overline{K} \times X_{\sigma}^S$. That $K \times X_{\sigma}^S \leq X_{\sigma_1}^S$ and $\overline{K} \times X_{\sigma}^S \leq X_{\sigma_2}^S$ is given by Lemmas 1.6 and 1.7. It follows immediately that $X_{\sigma}^{S} \leq X_{\sigma i}^{S}$ if i = 1, 2. For $i = \overline{1}, \overline{2}, X_{\sigma i} = \overline{X_{\sigma i}^{S}}$ where $\overline{i} = 1$, 2 so $X_{\overline{\sigma}}^{\underline{S}} \leq X_{\sigma i}^{\underline{S}}$ which implies $X_{\sigma}^{\underline{S}} = \overline{X_{\overline{\sigma}}^{\underline{S}}} \leq X_{\sigma i}^{\underline{S}}$.

Remark. Lemma 1.9 justifies the claim made after Definition 1.3 that the sets θA_{σ}^{S} obtained from different enumerations of the set S are recursively isomorphic. For $l_{\sigma}=1$ the sets θA_{σ}^{S} depend only on S, and for $l_{\sigma}>1$, the isomorphism is easily obtained by induction, using Lemma 1.9 (a) and (b).

Lemma 1.10. Let S be any infinite set $\subseteq N$. If σ is any index sequence, then X_{σ}^{S} is in the bounded truth-table degree of $X_{0}^{S} = \theta A_{0}^{S}$.

Proof. By induction on l_{σ} . If $\sigma = 0$ or $\overline{0}$, $X_{\sigma}^{S} = X_{0}^{S}$ or $X_{\overline{0}}^{S}$, so $X_{\sigma}^{S} \equiv_{b\sigma} X_{0}^{S}$. Assume $l_{\sigma} = n + 1$ and that the result holds for all τ such that $l_{\tau} \leq n$. Then by Definition 1.1, $\sigma = \tau i$ for some $i = 1, \overline{1}, 2$ or $\overline{2}$ and τ such that $X_{\tau}^{S} \equiv_{hr} X_{0}^{S}$. So it suffices to show that $X_{\tau}^{S} \equiv_{\mathbf{h}_{\tau}} X_{\tau_{i}}^{S}$.

Case 1. i = 1 or 2. By Lemma 1.9, $X_{\tau i}^{S} \cong K \times X_{\tau}^{S}$ or $\overline{K} \times X_{\tau}^{S}$. In either case, $X_{\tau}^{S} \leq X_{\tau i}^{S}$ so $X_{\tau}^{S} \leq_{\text{btt}} X_{\tau i}^{S}$. To show $X_{\tau i}^{S} \leq_{\text{btt}} X_{\tau}^{S}$ it suffices to have $K, \overline{K} \leq_{\text{btt}} X_{\tau}^{S}$. But by Lemma 0.1, since S and thus each A_{τ}^{S} is nontrivial, $K \leq X_{\tau}^{S}$ or $\overline{K} < X_{\tau}^{S}$. In

either case, K, $\overline{K} \leq_{\text{btt}} X_{\tau}^{S}$ and $X_{\tau i}^{S} \leq_{\text{btt}} X_{\tau}^{S}$.

Case 2. $i = \overline{1}$ or $\overline{2}$. Then $X_{\tau i}^{S} = \overline{X_{\tau i}^{S}}$ where $\overline{i} = 1$ or 2, so by Case 1, $X_{\overline{\tau i}}^{S}$ $\equiv_{\rm btt} X_{\overline{\tau}}^{\underline{S}} = \overline{X_{\tau}^{\underline{S}}}$. So by complementation, $X_{\tau_i}^{\underline{S}} \equiv_{\rm btt} X_{\tau}^{\underline{S}}$.

Definition 1.11. Let R be any (fixed) nonempty r.e. set such that \overline{R} is infinite. The sets $X_{\sigma}^{\overline{R}}$ will be denoted by Y_{σ} .

Lemma 1.12. $Y_0 \leq \overline{K}$.

Proof. $Y_0 = \{x \mid W_x \subseteq \overline{R}\}$, so $\overline{Y}_0 = \{x \mid W_x \cap R \neq \emptyset\}$ which is r.e., since R is assumed to be r.e. So $\overline{Y}_0 \leq K$ and $Y_0 \leq \overline{K}$.

Lemma 1.13. Let S be any infinite set $\subseteq N$. Then

- (a) $\overline{K} < X_0^S$,
- (b) for all index sequences σ , $Y_{\sigma} \leq X_{\sigma}^{S}$.

Proof. (a) $A_0^S = \{W_x \mid W_x \subseteq S\}$ so $\emptyset \in A_0^S$ and $N \in \overline{A_0^S}$, so by Lemma 0.1, $\overline{K} \le$

 $\theta A_0^S = X_0^S$. (b) By induction on l_σ . By Lemma 1.12 and part (a), $Y_0 \le X_0^S$ and, complementing, $Y_{0} = \overline{Y_{0}} \le X_{0}^{S}$. Now assume the lemma holds for all τ of length k > 0and let $l_{\tau} = k + 1$. Then $\sigma = \tau 1$, $\tau 2$, $\tau \overline{1}$ or $\tau \overline{2}$ for some τ with $l_{\tau} = k$. By the induction hypothesis, $Y_{\tau} \leq X_{\tau}^{S}$ which implies $K \times Y_{\tau} \leq K \times X_{\tau}^{S}$ and $\overline{K} \times Y_{\tau} \leq \overline{K} \times X_{\tau}^{S}$. If $\sigma = \tau 1$, then by Lemma 1.9(a), $Y_{\sigma} \cong K \times Y_{\tau} \leq K \times X_{\tau}^{S} \cong X_{\sigma}^{S}$; if $\sigma = \tau 2$, then by Lemma 1.9(b), $Y_{\sigma} \cong \overline{K} \times Y_{\tau} \leq \overline{K} \times X_{\tau}^{S} = X_{\sigma}^{S}$. So if $\sigma = \tau 1$ or $\tau 2$, $Y_{\sigma} \leq X_{\sigma}^{S}$. If $\overline{\sigma} = \tau \overline{1}$ or $\tau \overline{2}$, the result follows by complementation, since $\overline{\sigma} = \overline{\tau} 1$ or $\overline{\tau} 2$ where $l_{\overline{\tau}} = k$, so that $Y_{\overline{\sigma}} \leq X_{\sigma}^{S}$ which implies $Y_{\sigma} \leq X_{\sigma}^{S}$.

Remark. Lemma 1.13 justifies the lack of reference to R in the notation Y_{σ} , since if R' is any other nonempty r.e. set with \overline{R}' infinite, it follows that $Y_{\sigma}^{R} \leq X_{\sigma}^{\overline{R}'} = Y_{\sigma}^{R'}$ and $Y_{\sigma}^{R'} \leq X_{\sigma}^{\overline{R}} = Y_{\sigma}^{R}$. Thus for every index sequence σ , $Y_{\sigma}^{R} \cong Y_{\sigma}^{R'}$, so Y_{σ} is independent of the choice of R.

2. Acceptable index sequences.

Definition 2.1. The subset \mathfrak{A} of acceptable index sequences is defined inductively as follows.

(a)
$$0, \overline{0} \in \Omega$$
.

(b) if
$$l_{\sigma}$$
 is odd,

$$\sigma 1 \in \mathcal{C} \leftrightarrow \sigma = 0 \text{ or } \sigma = \tau \overline{1} \text{ or } \tau 2 \text{ for some } \tau \in \mathcal{C},$$

$$\sigma 2 \in \mathcal{C} \leftrightarrow \sigma = \overline{0} \text{ or } \sigma = \tau 1 \text{ or } \tau \overline{2} \text{ for some } \tau \in \mathcal{C},$$

$$\sigma \overline{1} \in \mathcal{C} \leftrightarrow \sigma = \overline{0} \text{ or } \sigma = \tau 1 \text{ or } \tau \overline{2} \text{ for some } \tau \in \mathcal{C},$$

$$\sigma \overline{2} \in \mathcal{C} \leftrightarrow \sigma = 0 \text{ or } \sigma = \tau \overline{1} \text{ or } \tau 2 \text{ for some } \tau \in \mathcal{C},$$

(c) if
$$l_{\sigma}$$
 is even,

$$\sigma 1 \in \Omega \leftrightarrow \sigma = r\overline{1}$$
 or $r\overline{2}$ for some $r \in \Omega$,
 $\sigma 2 \in \Omega \leftrightarrow \sigma = r\overline{1}$ or $r\overline{2}$ for some $r \in \Omega$,
 $\sigma \overline{1} \in \Omega \leftrightarrow \sigma = r\overline{1}$ or $r\overline{2}$ for some $r \in \Omega$,
 $\sigma \overline{2} \in \Omega \leftrightarrow \sigma = r\overline{1}$ or $r\overline{2}$ for some $r \in \Omega$.

It is clear that if $\sigma \in \mathcal{C}$,

$$l_{\sigma}$$
 odd \rightarrow one of σ , $\overline{\sigma}$ must have form
$$0, \ \tau\overline{11}, \ \tau\overline{21}, \ \tau\overline{12} \ \text{ or } \ \tau\overline{22} \quad \text{ for some } \ \tau \in \mathbb{C},$$

$$l_{\sigma} \ \text{ even } \rightarrow \text{ one of } \ \sigma, \ \overline{\sigma} \ \text{ must have form}$$

$$01, \ \overline{02}, \ \tau\overline{11}, \ \tau21, \ \tau12 \ \text{ or } \ \tau\overline{22} \quad \text{ for some } \ \tau \in \mathbb{C}.$$

We note for later use that for each $\sigma \in \mathfrak{A}$, there are exactly two ways to extend σ to a sequence $\sigma i \in \mathfrak{A}$.

Lemma 2.2. Let S be any infinite set $\subseteq \mathbb{N}$ and let $\sigma \in \mathfrak{A}$. Then (a) if l_{σ} is odd,

$$\sigma = 0$$
 or $\tau \overline{1}$ or $\tau 2 \rightarrow \emptyset \in A_{\sigma}^{S}$ and $N \notin A_{\sigma}^{S}$,
 $\sigma = \overline{0}$ or $\tau 1$ or $\tau \overline{2} \rightarrow \emptyset \notin A_{\sigma}^{S}$ and $N \in A_{\sigma}^{S}$.

(b) if l_{σ} is even,

$$\begin{split} \sigma &= \tau 1 \quad or \ \tau 2 \ \longrightarrow \ \varnothing \notin A_\sigma^S \ and \ N \notin A_\sigma^S, \\ \sigma &= \tau \overline{1} \quad or \ \tau \overline{2} \ \longrightarrow \ \varnothing \in A_\sigma^S \ and \ N \in A_\sigma^S. \end{split}$$

Proof. If $\sigma = 0$, $A_{\sigma}^{S} = \{W_{x} \mid W_{x} \subseteq S\}$, so clearly $\emptyset \in A_{\sigma}^{S}$ and $N \notin A_{\sigma}^{S}$. If $\sigma = \overline{0}$, $A_{\sigma}^{S} = \overline{A_{0}^{S}}$, so $\emptyset \notin A_{\sigma}^{S}$ and $N \in A_{\sigma}^{S}$. Now assume the lemma holds for all τ such that $1 \leq l_{\tau} < l_{\sigma}$.

Case 1. $l_{\alpha} = 2i + 2$.

Subcase 1.1. $\sigma = \tau 1$ for some $\tau \in \mathcal{C}$. Then by Definition 2.1, $\tau = 0$ or $\lambda \overline{1}$ or $\lambda 2$ for some $\lambda \in \mathcal{C}$. By the induction hypothesis, since $l_{\tau} = 2i + 1$, $N \notin A_{\tau}^{S}$. By Definition 1.3, $A_{\sigma}^{S} = \{W_{x} \mid s_{2i} \in W_{x} \text{ and } W_{x} \in A_{\tau}^{S}\}$. Clearly $\emptyset \notin A_{\sigma}^{S}$, and $N \notin A_{\tau}^{S}$ implies $N \notin A_{\sigma}^{S}$, since $A_{\sigma}^{S} = A_{\tau 1} \subseteq A_{\tau}^{S}$.

Subcase 1.2. $\sigma=\tau 2$ for some $\tau\in \mathfrak{A}$. Then by Definition 2.1, $\tau=\overline{0}$ or $\lambda 1$ or $\lambda \overline{2}$ for some $\lambda\in \mathfrak{A}$. By the induction hypothesis, since $l_{\tau}=2i+1$, $\emptyset\notin A_{\tau}^{S}$. By Definition 1.3, $A_{\sigma}^{S}=\{W_{x}\mid s_{2i}\notin W_{x} \text{ and } W_{x}\in A_{\tau}^{S}\}$. Clearly $N\notin A_{\sigma}^{S}$, and $\emptyset\notin A_{\tau}^{S}\to\emptyset\notin A_{\sigma}^{S}$, since $A_{\sigma}^{S}=A_{\tau 2}^{S}\subseteq A_{\tau}^{S}$.

Subcase 1.3. $\sigma = \tau \overline{1}$ or $\tau \overline{2}$ for some $\tau \in \mathcal{C}$. The result follows by complementation from the other subcases since $\overline{\sigma} = \overline{\tau} 1$ or $\overline{\tau} 2$ and \emptyset , $N \in A_{\sigma}^{S} \leftrightarrow \emptyset$, $N \notin A_{\overline{\sigma}}^{S}$.

Case 2. $l_{\sigma} = 2i + 3$.

Subcase 2.1. $\sigma = \tau 1$ for some $\lambda \in \mathcal{C}$. Then by Definition 2.1, $\tau = \lambda \overline{1}$ or $\lambda \overline{2}$ for for some $\lambda \in \mathcal{C}$, and by the induction hypothesis, since $l_{\tau} = 2i + 2$, $N \in A_{\tau}^{S}$. By Definition 1.3, $A_{\sigma}^{S} = \{W_{x} \mid s_{2i+1} \in W_{x} \text{ and } W_{x} \in A_{\tau}^{S}\}$. Clearly $\emptyset \notin A_{\sigma}^{S}$ and, since $N \in A_{\tau}^{S}$ and $s_{2i+1} \in N$, $N \in A_{\sigma}^{S}$.

Subcase 2.2. $\sigma = \tau 2$ for some $\tau \in \widehat{\mathfrak{A}}$. Then by Definition 2.1, $\tau = \lambda 2$ for some $\lambda \in \widehat{\mathfrak{A}}$, and by the induction hypothesis, since $l_{\tau} = 2i + 2$, $\emptyset \in A_{\tau}^{S}$. By Definition 1.3, $A_{\sigma}^{S} = \{W_{x} \mid s_{2i+1} \notin W_{x} \text{ and } W_{x} \in A_{\tau}^{S}\}$. Clearly $N \notin A_{\tau}^{S}$ and, since $\emptyset \in A_{\tau}^{S}$ and $s_{2i+1} \notin \emptyset$, $\emptyset \in A_{\sigma}^{S}$.

Subcase 2.3. $\sigma = \tau \overline{1}$ or $\tau \overline{2}$ for some $\tau \in \mathbb{C}$. By complementation from Subcases 2.2 and 2.3.

Lemma 2.3. Let $\sigma \in \mathfrak{A}$. Then

(a)
$$\sigma = 0 \rightarrow Y_{\sigma} \cong Z_{0}$$
,
 $\sigma = \overline{0} \rightarrow Y_{\sigma} \cong \overline{Z}_{0}$.

(b) If
$$l_{\sigma} = 2n + 2$$
, then

$$\sigma = \tau 1 \text{ or } \tau 2 \longrightarrow Y_{\sigma} \cong Z_{2n+1},$$

$$\sigma = \tau \overline{1} \text{ or } \tau \overline{2} \longrightarrow Y_{\sigma} \cong Z_{2n+1}.$$
(c) If $l_{\sigma} = 2n + 3$, then
$$\sigma = \tau \overline{1} \text{ or } \tau 2 \longrightarrow Y_{\sigma} \cong Z_{2n+2},$$

$$\sigma = \tau 1 \text{ or } \tau \overline{2} \longrightarrow Y_{\sigma} \cong \overline{Z}_{2n+2}.$$

Proof. By induction on l_{σ} . If $l_{\sigma} = 1$ then $\sigma = 0$ or $\overline{0}$. By Lemma 1.12, $Y_{0} \leq$ \overline{K} and by Lemma 1.13(a), $\overline{K} \leq X_0^R = Y_0$. So $Y_0 \cong \overline{K} = Z_0$, by Definition 0.2, and $Y_{\overline{0}} = \overline{Y_0} \cong \overline{Z_0}$. Now assume the results hold for all $\tau \in \mathcal{C}$ such that $1 \le l_{\gamma} < l_{\sigma}$. Case 1. $l_{\sigma} = 2n + 2$.

Subcase 1.1. $\sigma = \tau 1$ or $\tau \overline{1}$ for some $\tau \in \mathcal{C}$. By Definition 2.1, $\tau 1 \in \mathcal{C} \leftrightarrow \tau = 0$ or $\lambda \overline{1}$ or $\lambda 2$ for some $\lambda \in \mathcal{C}$. By the induction hypothesis, since $l_{\tau} = 2n + 1$, $Y_{\tau} \cong$ Z_{2n} . Then by Lemmas 1.9 and 0.3 $Y_{r1} \cong K \times Y_r \cong K \times Z_{2n} \cong Z_{2n+1}$. Replacing τ by $\overline{\tau}$ in this argument gives $Y_{\overline{\tau}1} \cong Z_{2n+1}$, so $Y_{\tau\overline{1}} = \overline{Y}_{\overline{\tau}1} \cong \overline{Z}_{2n+1}$.

Subcase 1.2. $\sigma = 72$ or $7\overline{2}$ for some $\tau \in \mathcal{C}$. By Definition 2.1, $\tau 2 \in \mathcal{C} \leftrightarrow \tau = \overline{0}$ or $\lambda 1$ or $\lambda \overline{2}$ for some $\lambda \in \mathcal{C}$. By the induction hypothesis, $Y_{\tau} \cong \overline{Z}_{2n}$, so by Lemmas 1.9 and 0.3, $Y_{r2} \cong \overline{K} \times Y_r \cong \overline{K} \times \overline{Z}_{2n} \cong Z_{2n+1}$. Similarly, $Y_{\overline{r}2} \cong Z_{2n+1}$, so $Y_{r\overline{2}} = \overline{Z}_{2n+1}$ $\overline{Y}_{\overline{7}2} \cong \overline{Z}_{2n+1}.$ Case 2. $l_{\alpha} = 2n + 3.$

Subcase 2.1. $\sigma = \tau 1$ or $\tau \overline{1}$ for some $\tau \in \widehat{\mathfrak{A}}$. By Definition 2.1, $\tau 1 \in \widehat{\mathfrak{A}} \leftrightarrow \tau = \lambda \overline{1}$ or $\lambda \overline{2}$ for some $\lambda \in \mathcal{C}$. By the induction hypothesis, $Y_{\tau} \cong \overline{Z}_{2n+1}$. Then by Lemmas 1.9 and 0.3, $Y_{\tau 1} \cong K \times Y_{\tau} \cong K \times \overline{Z}_{2n+1} \cong \overline{Z}_{2n+2}$. Similarly, $Y_{\overline{\tau}1} \cong \overline{Z}_{2n+2}$, so $Y_{\overline{\tau_1}} = \overline{Y}_{\overline{\tau}_1} \cong Z_{2n+2}.$

Subcase 2.2. $\sigma = \tau 2$ or $\tau \overline{2}$ for some $\tau \in \widehat{\mathfrak{A}}$. By Definition 2.1, $\tau 2 \in \widehat{\mathfrak{A}} \leftrightarrow \tau = \lambda \overline{1}$ or $\lambda \overline{2}$ for some $\lambda \in \mathcal{C}$. By the induction hypothesis, $Y_r \cong \overline{Z}_{2n+1}$, so by Lemmas 1.9 and 0.3, $Y_{\tau 2} \cong \overline{K} \times Y_{\tau} \cong \overline{K} \times \overline{Z}_{2n+1} \cong Z_{2n+2}$. Similarly, $Y_{\overline{\tau}2} \cong Z_{2n+2}$, so $Y_{7\overline{2}} = \overline{Y}_{\overline{7}2} \cong \overline{Z}_{2n+2}.$

Lemma 2.4. (a) If
$$\sigma \in \mathfrak{A}$$
 then $Y_{\sigma} \cong Z_{l_{\sigma}-1}$ or $\overline{Z_{l_{\sigma}-1}}$.
(b) If σ , $\tau \in \mathfrak{A}$ and $l_{\tau} < l_{\sigma}$, then $Y_{\tau} < Y_{\sigma}$.

Proof. (a) follows from Lemma 2.3, since the various cases exhaust A. For (b), assume $l_{\tau} = m + 1$ and $l_{\sigma} = n + 1$ for m < n. Then by (a), $Y_{\tau} \cong Z_{m}$ or \overline{Z}_{m} and $Y_{\sigma} \cong Z_n$ or \overline{Z}_n . Then by Lemma 0.4, $Y_{\tau} < Z_{m+1} \le Z_n$ and $Y_{\tau} < \overline{Z}_{m+1} < \overline{Z}_n$. Thus in any case $Y_{\tau} < Y_{\sigma}$.

Lemma 2.5. For all m, n,

(a)
$$Z_m \not\cong \overline{Z}_n$$
,

(b)
$$m \neq n \rightarrow Z_m \not\cong Z_n$$
.

Proof. By Lemma 0.4, $m < n \rightarrow Z_m < \overline{Z}_{m+1} < \overline{Z}_n$, and $m = n \rightarrow Z_m | \overline{Z}_n$. Thus in either case (a) holds. Lemma 0.4 also implies (b), since, e.g., $m < n \rightarrow Z_m < Z_{m+1} \le Z_n$.

Lemma 2.6. Let $\sigma \in \mathfrak{A}$. Then

- (a) $Y_{\sigma} \cong Z_0 \rightarrow \sigma = 0$,
- (b) $Y_{\sigma} \cong Z_{2n+1} \longrightarrow I_{\sigma} = 2n+2$ and $\sigma = \tau 1$ or $\tau 2$ for some $\tau \in \mathcal{C}$,
- (c) $Y_{\sigma} \cong Z_{2n+2} \to l_{\sigma} = 2n+3$ and $\sigma = \tau \overline{1}$ or $\tau 2$ for some $\tau \in \mathcal{C}$.
- **Proof.** (a) Assume $\sigma \neq 0$. Then $\sigma = \overline{0}$ or τi for some $\tau \in \widehat{\mathbb{C}}$, $i = 1, 2, \overline{1}$ or $\overline{2}$. By Lemma 2.3, this implies $Y_{\sigma} = Z_{\overline{0}}$ or $Y_{\sigma} = Z_{\overline{m}}$ or \overline{Z}_{m} for some m > 0. In any case, by Lemma 2.5, $Y_{\sigma} \neq Z_{\overline{0}}$.
- (b) Let $m=l_{\sigma}-1$. If $l_{\sigma} \neq 2n+2$, then $m \neq 2n+1$ and, by Lemma 2.4(a), $Y_{\sigma} \cong Z_{m}$ or \overline{Z}_{m} . By Lemma 2.5, this implies $Y_{\sigma} \not\cong Z_{2n+1}$. If $l_{\sigma}=2n+2$ but $\sigma \neq r1$ or r2 for some $r \in \mathbb{C}$, then $\sigma = r\overline{1}$ or $r\overline{2}$. Then by Lemma 2.3(b), $Y_{\sigma} \cong \overline{Z}_{2n+1} \not\cong Z_{2n+1}$.
- (c) Let $m=l_{\sigma}-1$. If $l_{\sigma}\neq 2n+3$, then $m\neq 2n+2$ and, by Lemma 2.4(a), $Y_{\sigma}\cong Z_{m}$ or \overline{Z}_{m} So by Lemma 2.5, $Y_{\sigma}\not\cong Z_{2n+2}$. If $l_{\sigma}=2n+3$ but $\sigma\neq r\overline{1}$ or $r\overline{2}$ for some $r\in \mathcal{C}$ then $\sigma=r\overline{1}$ or $r\overline{2}$, so by Lemma 2.3(c), $Y_{\sigma}\cong \overline{Z}_{2n+2}\not\cong Z_{2n+2}$.

Theorem 2.7. Let $\sigma \in \mathfrak{A}$. Then

- (a) $Y_{\sigma} \cong Z_0 \leftrightarrow \sigma = 0$,
- (b) $Y_{\sigma} \cong \overline{Z}_0 \leftrightarrow \sigma = \overline{0}$,
- (c) $Y_{\sigma} \cong Z_{2n+1} \leftrightarrow l_{\sigma} = 2n+2$ and $\sigma = \tau 1$ or $\tau 2$ for some $\tau \in \mathcal{C}$,
- (d) $Y_{\sigma} \cong \overline{Z}_{2n+1} \leftrightarrow l_{\sigma} = 2n + 2$ and $\sigma = \tau \overline{1}$ or $\tau \overline{2}$ for some $\tau \in \widehat{C}$,
- (e) $Y_{\sigma} \cong Z_{2n+2} \leftrightarrow l_{\sigma} = 2n+3$ and $\sigma = \tau \overline{1}$ or $\tau 2$ for some $\tau \in \mathcal{C}$,
- (f) $Y_{\sigma} \cong \overline{Z}_{2n+2} \leftrightarrow l_{\sigma} = 2n+3$ and $\sigma = \tau 1$ or $\tau \overline{2}$ for some $\tau \in \mathcal{C}$.

Proof. (a), (c) and (e) follow from Lemmas 2.3 and 2.6. The other parts are obtained by complementation, since $l_{\sigma} = l_{\overline{\sigma}}$, $\overline{\tau i} = \overline{\tau} i$ and $Y_{\sigma} \cong Z_m \leftrightarrow Y_{\overline{\sigma}} \cong \overline{Z}_m$.

Lemma 2.8. If
$$\sigma i$$
, $\sigma j \in \mathcal{C}$ $(i, j = 1, 2, \overline{1} \text{ or } \overline{2})$ then $i \neq j \rightarrow Y_{\sigma i} \cong \overline{Y}_{\sigma j}$.

Proof. Assume $i \neq j$ and σi , $\sigma j \in \mathcal{C}$.

Case 1. $l_{\sigma}=2n+1$. If $\sigma=0$ or $\tau\overline{1}$ or $\tau2$ for some $\tau\in \mathbb{C}$, then, by Definition 2.1, σi , $\sigma j\in \mathbb{C} \longleftrightarrow i$, j=1 or $\overline{2}$, say i=1 and $j=\overline{2}$. Since $l_{\sigma i}=l_{\sigma j}=2n+2$, it follows by Theorem 2.7 that $Y_{\sigma 1}\cong Z_{2n+1}$ and $Y_{\sigma \overline{2}}\cong \overline{Z}_{2n+1}$, so $Y_{\sigma i}\cong \overline{Y}_{\sigma j}$. If $\sigma=\overline{0}$ or $\tau1$ or $\tau\overline{2}$, the result follows by consideration of complements.

Case 2. $l_{\sigma} = 2n + 2$. If $\sigma = \tau 1$ or $\tau 2$ for some $\tau \in \mathbb{C}$ then, by Definition 2.1, σi , $\sigma j \in \mathbb{C} \leftrightarrow i$, $j = \overline{1}$ or $\overline{2}$, say $i = \overline{1}$ and $j = \overline{2}$. Since $l_{\sigma i} = l_{\sigma j} = 2n + 3$, it follows by Theorem 2.7 that $Y_{\sigma \overline{1}} \cong Z_{2n+2}$ and $Y_{\sigma \overline{2}} \cong \overline{Z}_{2n+2}$, so $Y_{\sigma i} = \overline{Y_{\sigma j}}$. If $\sigma = \tau \overline{1}$ or $\tau \overline{2}$, the result again follows by considering complements.

Lemma 2.9. Let S be any infinite set $\subseteq N$. Then for all $\sigma \in \mathfrak{A}$, if $i = 1, \overline{1}, 2$, $\overline{2}$ and $\sigma i \in \mathfrak{A}$, $X_{\sigma} \not\cong Y_{\sigma i}$.

Proof. Case 1. $l_{\sigma} = 2n + 1$, $\sigma = 0$ or $\tau \overline{1}$ or $\tau 2$ for some $\tau \in \mathfrak{A}$. Then by Lemma 2.2, $\emptyset \in A_{\sigma}^{S}$ and $N \notin A_{\sigma}^{S}$. By Definition 2.1, $\sigma i \in \mathfrak{A} \to i = 1$ or $\overline{2}$.

Subcase 1.1. i=1. Then by Theorem 2.7, since $l_{\sigma i}=2n+2$, $Y_{\sigma i}\cong Z_{2n+1}$. It follows by Lemma 0.5 that $\theta A\cong Y_{\sigma i}\to \overline{\theta A}\cong \overline{Z}_{2n+1}\to \varnothing\in \overline{A}$. But this implies $X_{\sigma}^S=\theta A_{\sigma}^S \not\cong Y_{\sigma i}$ since $\varnothing\in A_{\sigma}^S$.

Subcase 1.2. $i = \overline{2}$. Then by Theorem 2.7, $Y_{\sigma i} = \overline{Z}_{2n+1}$, so by Lemma 0.5, $\theta A = Y_{\sigma i} \to \theta \overline{A} = Z_{2n+1} \to N \in A$. But this implies $X_{\sigma}^{S} = \theta A_{\sigma}^{S} \not\cong Y_{\sigma i}$, since $N \not\in A_{\sigma}^{S}$.

Case 2. $l_{\sigma} = 2n + 1$, $\sigma = \overline{0}$ or $\tau 1$ or $\tau \overline{2}$ for some $\tau \in \mathcal{C}$. Then $\overline{\sigma} = 0$ or $\overline{\tau} \overline{1}$ or $\overline{\tau} \overline{2}$ so, by Case 1, $X_{\overline{\sigma}}^{S} \not\triangleq Y_{\overline{\sigma}i} = Y_{\overline{\sigma}i}$. But this implies $X_{\sigma}^{S} = \overline{X_{\overline{\sigma}}^{S}} \not\triangleq \overline{Y_{\overline{\sigma}i}} = Y_{\sigma i}$.

Case 3. $l_{\sigma} = 2n + 2$, $\sigma = \tau 1$ or $\tau 2$ for some $\tau \in \mathbb{C}$. Then by Lemma 2.2, $\emptyset \notin A_{\sigma}^{S}$ and $N \notin A_{\sigma}^{S}$. By Definition 2.1, $\sigma i \in \mathbb{C} \to i = \overline{1}$ or $\overline{2}$.

Subcase 3.1. $i=\overline{1}$. Then by Theorem 2.7, $Y_{\sigma i}\cong Z_{2n+2}$, so by Lemma 0.5, $\theta A=Y_{\sigma i}\to \theta \overline{A}=\overline{Z}_{2n+2}\to \varnothing\in A$. It follows that $X_{\sigma}^S=\theta A_{\sigma}^S \not\cong Y_{\sigma i}$, since $\varnothing\notin A_{\sigma}^S$.

Subcase 3.2. $i=\overline{2}$. Then by Theorem 2.7, $Y_{\sigma i}\cong \overline{Z}_{2n+2}$, so by Lemma 0.5, $\theta A\cong Y_{\sigma i}\to \theta \overline{A}=Z_{2n+2}\to N\in A$. If follows that $X_{\sigma}^S=\theta A_{\sigma}^S \not\cong Y_{\sigma i}$, since $N\not\in A_{\sigma}^S$. Case 4. $l_{\sigma}=2n+2$, $\sigma=\tau\overline{1}$ or $\tau\overline{2}$ for some $\tau\in G$. Then $\overline{\sigma}=\overline{\tau}\overline{1}$ or $\overline{\tau}2$, so by Case 3, $X_{\overline{\sigma}}^S\not\cong Y_{\overline{\sigma i}}=Y_{\overline{\sigma i}}$. It follows that $X_{\sigma}^S=\overline{X_{\overline{\sigma}}^S}\not\cong \overline{Y_{\overline{\sigma i}}}=Y_{\sigma i}$.

Lemma 2.10. For all S, $S \leq X_0^S$.

Proof. Recall that $X_0^S = \{x \mid W_x \subseteq S\}$, and let g be a recursive function such that $\{n\} = W_{g(n)}$, for all n. Then $n \in S \leftrightarrow \{n\} \subseteq S \leftrightarrow g(n) \in X_0^S$.

Lemma 2.11. Let S be any set such that \overline{S} is not r.e. Then for all $\sigma \in \mathfrak{A}$, $Y_{\sigma} < X_{\sigma}^{S}$.

Proof. By Lemma 1.13, $Y_{\sigma} \leq X_{\sigma}^{S}$, so it suffices to prove $X_{\sigma}^{S} \not\leq Y_{\sigma}$, by induction on l_{σ} .

Case 1. $l_{\sigma}=1$. Then $\sigma=0$ or $\overline{0}$. If $\sigma=\overline{0}$, $Y_{\sigma}\cong Z_{\overline{0}}=K$, by Lemma 2.3; also $\overline{S}\leq X_{\overline{0}}^S=X_{\overline{0}}^S$, by Lemma 2.10. Then $X_{\overline{0}}^S\leq Y_{\overline{0}}\to \overline{S}\leq X_{\overline{0}}^S\leq K$ which implies \overline{S} is r.e., contrary to hypothesis. The result for $\sigma=0$ follows by symmetry.

Case 2. $l_{\sigma} = k + 2$, $k \ge 0$. Assume the result holds for all $\tau \in \mathfrak{A}$ such that $l_{\tau} < l_{\sigma}$, but that $X_{\sigma}^{S} \le Y_{\sigma}$.

Since $l_{\sigma} > 1$, $\sigma = \tau i$ for some $\tau \in \mathcal{C}$. By Lemmas 1.13 and 1.9(c), $Y_{\tau} \leq X_{\tau}^S \leq X_{\tau i}^S \leq Y_{\tau i}$. Since $l_{\tau} = k+1$, it follows by Lemma 2.4(a) that $Y_{\tau} \cong Z_k$ or \overline{Z}_k and $Y_{\tau i} \cong Z_{k+1}$ or \overline{Z}_{k+1} . Then by Lemma 0.6, $Y_{\tau} \leq X_{\tau}^S = \theta A_{\tau}^S \leq Y_{\tau i}$ implies $Y_{\tau} \cong X_{\tau}^S$

or $Y_{\tau_i} \cong X_{\tau}^S$. But the first of these contradicts the induction hypothesis and the latter contradicts Lemma 2.9.

Theorem 2.12. Let S be any infinite set $\subseteq N$ and let $\sigma \in \mathfrak{A}$. Then

- (a) $Z_0 \leq X_0^S$;
- (b) $\overline{Z}_0 \leq X_{\overline{0}}^S$;
- (c) if $l_{\sigma} = 2n + 2$ and $\sigma = \tau 1$ or $\tau 2$ for some $\tau \in \mathcal{C}$, then $Z_{2n+1} \leq X_{\sigma}^{S}$;
- (d) if $l_{\sigma} = 2n + 2$ and $\sigma = \tau \overline{1}$ or $\tau \overline{1}$ for some $\tau \in \mathcal{C}$, then $\overline{Z}_{2n+1} \leq X_{\sigma}^{S}$
- (e) if $l_{\sigma} = 2n + 3$ and $\sigma = \tau \overline{1}$ or $\tau 2$ for some $\tau \in \mathcal{C}$, then $Z_{2n+2} \leq X_{\sigma}^{S}$;
- (f) if $l_{\sigma} = 2n + 3$ and $\sigma = \tau 1$ or $\tau \overline{2}$ for some $\tau \in \mathfrak{A}$, then $\overline{Z}_{2n+2} \leq X_{\sigma}^{S}$. If, in addition, \overline{S} is not r.e., all the inequalities are strict.

Proof. By Lemma 1.13, Theorem 2.7 and Lemma 2.11.

Lemma 2.13. Let S be any infinite set such that $K \not\leq_T S$. Then for all $\sigma \in \mathfrak{A}$, $Y_{\overline{\sigma}} \not\leq X_{\sigma}^S$.

Proof. By induction on l_{σ} . For $\sigma=0$, $Y_0\cong \overline{K}$ by Lemma 2.3. That $\overline{K}\nleq X_0^S=\{x\mid W_x\cap \overline{S}\neq\emptyset\}$ if $K\nleq_T S$ was proved in [1, Theorem 3.5], by observing that $X_{\overline{0}}^S$ is r.e. in S, so that $\overline{K}\leq X_0^S\to \overline{K}$ r.e. in $S\to K\leq_T S$, contrary to hypothesis. By symmetry, $Y_{\overline{0}}\nleq X_0^S$. Now assume the result for all $\tau\in \widehat{\Omega}$ such that $l_{\tau}< l_{\sigma}$.

Case 1. $\sigma = \tau 1$ or $\tau \overline{1}$ for some $\underline{\tau \in G}$. If $\sigma = \tau 1$ then, by Lemma 1.9, $X_{\sigma}^{S} \cong K \times X_{\tau}^{S}$ and, by Lemma 2.2, $\emptyset \in A_{\overline{\sigma}}^{\overline{R}} = A_{\sigma}^{\overline{R}}$. So $Y_{\overline{\sigma}} \leq X_{\sigma}^{S} \longrightarrow Y_{\overline{\sigma}} = \theta A_{\overline{\sigma}}^{\overline{R}} \leq K \times X_{\tau}^{S}$ which by Lemma 0.7 implies $Y_{\overline{\sigma}} \leq X_{\tau}^{S}$. It follows by Lemma 2.4(b), since $l_{\tau} < l_{\sigma}$, that $Y_{\overline{\tau}} < Y_{\overline{\sigma}} \leq X_{\tau}^{S}$, which contradicts the induction hypothesis. If $\sigma = \tau \overline{1}$ the result follows by complementation.

Case 2. $\sigma = \tau 2$ or $\tau \overline{2}$ for some $\underline{\tau} \in \widehat{\mathfrak{A}}$. If $\sigma = \tau 2$, then by Lemma 1.9, $X_{\sigma}^S \cong \overline{K} \times X_{\tau}^S$ and, by Lemma 2.2, $N \in A_{\overline{\sigma}}^{\overline{R}} = A_{\sigma}^{\overline{R}}$. So $Y_{\overline{\sigma}} \leq X_{\sigma}^S \longrightarrow Y_{\overline{\sigma}} = \theta A_{\overline{\sigma}}^{\overline{R}} \leq \overline{K} \times X_{\tau}^S$ which by Lemma 0.8 implies $Y_{\overline{\sigma}} \leq X_{\tau}^S$. It follows by Lemma 2.4(b) that $Y_{\overline{\tau}} < Y_{\overline{\sigma}} \leq X_{\tau}^S$, which contradicts the induction hypothesis. The result for $\sigma = \tau \overline{2}$ follows by complementation.

Lemma 2.14. Let S be any infinite set $\subseteq N$ such that $K \not\leq_T S$. Then for any index sequence σ and $i = 1, \overline{1}, 2$ or $\overline{2}, \sigma \in \widehat{\Omega}$ and $\sigma i \in \widehat{\Omega} \to X_{\sigma}^S < X_{\sigma i}^S$.

Proof. By Lemma 1.9, $X_{\sigma}^S \leq X_{\sigma i}^S$ so it suffices to prove $X_{\sigma i}^S \nleq X_{\sigma}^S$. Now by Lemma 2.4(b), $Y_{\overline{\sigma}} \leq Y_{\sigma i}$ and, by Lemma 1.13, $Y_{\sigma i} \leq X_{\sigma i}^S$. Then $X_{\sigma i}^S \leq X_{\sigma}^S$ implies $Y_{\overline{\sigma}} \leq Y_{\sigma i} \leq X_{\sigma i}^S \leq X_{\sigma}^S$, which contradicts Lemma 2.13.

Lemma 2.15. Let S be any infinite set $\subseteq N$ such that $K \not\subseteq_T S$, and let $\sigma \in \mathfrak{A}$. If for $i, j = 1, \overline{1}, 2$ or $\overline{2}$, $\sigma i \in \mathfrak{A}$ and $\sigma j \in \mathfrak{A}$, then $i \neq j \to X_{\sigma i}^S \mid X_{\sigma j}^S$.

Proof. By Lemma 1.13, $Y_{\sigma i} \leq X_{\sigma i}^{S}$, so to show $X_{\sigma i}^{S} \nleq X_{\sigma j}^{S}$ it suffices to prove $Y_{\sigma i} \nleq X_{\sigma j}^{S}$ for $j \neq i$. But, by Lemma 2.8, $Y_{\sigma i} = \overline{Y}_{\sigma j} = Y_{\overline{\sigma j}}$, and by Lemma 2.13, $Y_{\overline{\sigma j}} \nleq X_{\sigma j}^{S}$, which implies $X_{\sigma i}^{S} \nleq X_{\sigma j}^{S}$. The other half follows by symmetry.

3. Acceptable index functions.

Definition 3.1. Let f be a function, $f: N \to \{0, \overline{0}, 1, \overline{1}, 2, \overline{2}\}$. For each $i \in N$, let $\sigma(i, f)$ be defined inductively as follows:

- (a) $\sigma(0, f) = f(0)$,
- (b) $\sigma(i + 1, f) = \sigma(i, f) * f(i + 1).$

If $\sigma(i, f) = \sigma$ then $\overline{\sigma}(i, f)$ denotes $\overline{\sigma}$.

Definition 3.2. Let f be a function, $f: N \to \{0, \overline{0}, 1, \overline{1}, 2, \overline{2}\}$. f is an acceptable index function (a.i.f.) if, for every $i \in N$, $\sigma(i, f) \in \widehat{\mathbb{G}}$.

Note that by this definition f is an a.i.f. only if $f(0) \in \{0, \overline{0}\}$ and $f(i) \in \{1, \overline{1}, 2, \overline{2}\}$ for all i > 0.

Remark 1. There exist continuum—many acceptable index functions such that f(0) = 0 and continuum—many such that $f(0) = \overline{0}$. This is easily seen as follows: By Definition 2.1, 0 and $\overline{0}$ are both in \mathcal{C} , and as noted after Definition 2.1, for each $\sigma \in \mathcal{C}$ there are exactly two ways to extend σ to a sequence $\sigma i \in \mathcal{C}$; and there are σ paths through an infinite tree which branches twice at each node.

Lemma 3.3. Let f be defined by f(0) = 0, f(2n + 1) = 1, $f(2n + 2) = \overline{1}$. Then f is an acceptable index function and, for each m, $Z_m \cong Y_{\sigma(m,f)}$.

Proof. We show by induction on m that $\sigma(m, f) \in \mathcal{C}$ and $Z_m \cong Y_{\sigma(m, f)}$. For m = 0, the result holds since $\sigma(0, f) = 0 \in \mathcal{C}$ and $Z_0 \cong Y_0$ by Theorem 2.7. Now assume the result holds for m.

Case 1. m+1 is odd. Then $\sigma(m+1,f)=\sigma(m,f)*f(m+1)=\sigma(m,f)*1$, and $Y_{\sigma(m,f)}\cong Z_m$ implies $\sigma(m,f)=0$ or $\tau\overline{1}$ or $\tau 2$ for some $\tau\in\widehat{\mathfrak{A}}$, by Theorem 2.7(a) and (e). Since $l_{\sigma(m,f)}=m+1$ is odd, it follows by Definition 2.1 that $\sigma(m+1,f)=\sigma(m,f)*1\in\widehat{\mathfrak{A}}$, and by Theorem 2.7(c) that $Y_{\sigma(m+1,f)}\cong Z_{m+1}$.

Case 2. m+1 is even. Then $\sigma(m+1,f)=\sigma(m,f)*f(m+1)=\sigma(m,f)*\overline{1}$, and $Y_{\sigma(m,f)}\cong Z_m$ implies $\sigma(m,f)=r1$ or r2 for some $r\in \mathcal{C}$, by Theorem 2.7(c). Since $l_{\sigma(m,f)}=m+1$ is even, it follows by Definition 2.1 that $\sigma(m+1,f)=\sigma(m,f)*\overline{1}\in \mathcal{C}$, and by Theorem 2.7(e) that $Y_{\sigma(m+1,f)}\cong Z_{m+1}$.

4. Discrete ω-sequences.

Definition 4.1. Let $\{A_n\}_{n\geq 0}$ be a sequence of classes of r.e. sets. The sequence $\{\theta A_n\}_{n\geq 0}$ is a discrete ω -sequence of index sets iff

- (a) $\theta A_n < \theta A_{n+1}$ for each n;
- (b) for any class B of r.e. sets and each n, $\theta A_n \leq \theta B \leq \theta A_{n+1}$ implies $\theta B \cong \theta A_n$ or $\theta B \cong \theta A_{n+1}$.

Definition 4.2. A discrete ω -sequence of 1-degrees denotes the sequence of 1-degrees of a discrete ω -sequence of index sets.

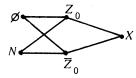
Evidently two different sequences of sets may determine the same sequence of 1-degrees.

Definition 4.3. If S is a set and f an acceptable index function, the sequence $\{\theta A_{\sigma(n,f)}\}_{n\geq 0}$ is the S-sequence of index sets determined by f. The corresponding sequence of 1-degrees is the S-sequence of 1-degrees determined by f.

Lemma 4.4. The 1-degrees of Z_0 and $\overline{Z_0}$ are each at the bottom of c discrete ω -sequences of 1-degrees, each contained in the bounded truth-table degree of Z_0 .

Proof. Let $\{X_m\}_{m\geq 0}$ be any sequence such that $X_0=Z_0$, $X_m=Z_m$ or \overline{Z}_m for each m>0. Then by Lemmas 0.4 and 0.6, each such sequence is a discrete ω -sequence. Since $Z_m \not = \overline{Z}_m$, it follows as in Remark 1 that there are c such sequences and that distinct sequences determine distinct sequences of degrees; similarly if $X_0=\overline{Z}_0$. That the sequences are contained in the btt-degree of Z_0 follows from Lemma 0.3 and the fact that $Z_0=\overline{K}$, as in the proof of Lemma 1.10.

Lemma 4.5. Let $X = Z_1$ or \overline{Z}_1 . Then



is an initial segment of the partial ordering of index sets under one-one reducibility.

Proof. Let B be any class of r.e. sets. It is well known that \emptyset , N < K, \overline{K} , which together with Lemma 0.4, implies \emptyset , $N < Z_0$, $\overline{Z}_0 < X$. Assume B is a class of r.e. sets such that $\theta B \le X$. We will show that $\theta B \cong \emptyset$, N, Z_0 or $\overline{Z_0}$.

Case 1. $B = \emptyset$ or $\overline{B} = \emptyset$. Then $\theta B = \emptyset$ or $\theta B = N$, respectively.

Case 2. $B \neq \emptyset$ and $\overline{B} \neq \emptyset$. If $\emptyset \in B$, then by Lemma 0.1, $\overline{K} = Z_0 \leq \theta B \leq X$. So by Lemma 0.6, $\theta B \cong Z_0$ or $\theta B \cong X$. If $\emptyset \notin B$, then by Lemma 0.1, $\overline{K} = \overline{Z_0} \leq \theta \overline{B} \leq \overline{X}$ so, by Lemma 0.6, $\theta \overline{B} \cong Z_0$ or $\theta \overline{B} \cong \overline{X}$. It follows that $\theta B \cong \overline{Z_0}$ or $\theta B \cong X$, which completes the proof.

Remark 2. Lemma 4.5 cannot be strengthened by replacing Z_1 by Z_m for m>1; i.e., we can prove that, for all m>1, Z_m has a predecessor θB such that $\theta B \not\cong Z_k$ or \overline{Z}_k for any k < m. The proof will appear elsewhere [7].

Theorem 4.6. If S is co-r.e., then the 1-degrees of θA_0^S and $\theta \overline{A}_0^S$ are at the bottom of c discrete ω -sequences of 1-degrees. If $S \neq N$, these sequences are all contained in the bounded truth-table degree of θA_0^S .

Proof. Case 1. $S \neq N$. Then $\theta \overline{A}_0^S = \{x \mid W_x \cap \overline{S} \neq \emptyset\}$ is r.e. and $N \in \theta \overline{A}_0^S$, so $\theta \overline{A}_0^S \leq K$ and, by Lemma 0.1, $K \leq \theta \overline{A}_0^S$. So $\theta \overline{A}_0^S \cong K = \overline{Z}_0$ and $\theta A_0^S \cong Z_0$. The conclusion then follows from Lemma 4.4.

Case 2. S=N. Then $\theta A_0^S=N$ and $\theta \overline{A}_0^S=\emptyset$. Let $\{X_m\}_{m\geq 0}$ be any sequence such that $X_0=N$, $X_{m+1}=Z_m$ or \overline{Z}_m for all m. As in the proof of Lemma 4.4, there are c such sequences, and similarly if $X_0=\emptyset$. These sequences are discrete, by Lemmas 4.4 and 4.5, and determine distinct sequences of degrees since $X_m\cong \overline{X}_m$, for all m.

Theorem 4.7. Let S be any infinite set $\subseteq N$ such that $K \not\subset_T S$. If f is any acceptable index function, the S-sequence of index sets determined by f is a discrete ω -sequence of index sets, all contained in the bounded truth-table degree of θA_0^S .

Proof. Let θA_n denote $\theta A_{\sigma(n,f)}^S$. By Lemma 1.10, each θA_n is in the btt-degree of θA_0^S . By Lemma 2.14, $\theta A_n = X_{\sigma(n,f)}^S < X_{\sigma(n+1,f)}^S = \theta A_{n+1}^S$, since $\sigma(n+1,f) = \sigma(n,f)*i$ and $\sigma(n,f), \sigma(n+1,f) \in \Omega$. It remains to show the sequence is discrete. Assume $\theta A_n \leq \theta B \leq \theta A_{n+1}$.

Case 1. f(n+1) = 1. Then $\sigma(n+1, f) = \sigma(n, f) * 1$, so by Lemma 1.9, $\theta A_{n+1} = X_{\sigma(n+1, f)}^{S} \cong K \times X_{\sigma(n, f)}^{S} = K \times \theta A_{n}$. But by Lemma 0.9, $\theta A_{n} \leq \theta B \leq \theta A_{n+1} \cong K \times \theta A_{n}$ implies $\theta B \cong \theta A_{n}$ or $\theta B \cong \theta A_{n+1}$.

Case 2. f(n+1) = 2. Then $\sigma(n+1, f) = \sigma(n, f) * 2$ so by Lemma 1.9, $\theta A_{n+1} = X_{\sigma(n+1,f)}^S \cong \overline{K} \times X_{\sigma(n,f)}^S = \overline{K} \times \theta A_n$. Then by Lemma 0.10, $\theta A_n \leq \theta B \leq \theta A_{n+1} \cong \overline{K} \times \theta A_n$ implies $\theta B \cong \theta A_n$ or $\theta B \cong \theta A_{n+1}$.

Case 3. $f(n+1)=\overline{1}$ or $\overline{2}$. Then $\sigma(n+1,f)=\sigma(n,f)*i$ where i=1 or 2, and $\theta A_n \leq \theta B \leq \theta A_{n+1}$ implies $\theta \overline{A}_n \leq \theta \overline{B} \leq \theta \overline{A}_{n+1}$ where $\theta \overline{A}_n = X_{\overline{\sigma}(n,f)}$ and $\theta \overline{A}_{n+1} = X_{\overline{\sigma}(n+1,f)} = X_{\overline{\sigma}(n,f)*i}$, where i=1 or 2. By Cases 1 and 2, replacing σ by $\overline{\sigma}$ (since $\sigma \in \mathcal{C} \leftrightarrow \overline{\sigma} \in \mathcal{C}$), $\theta \overline{A}_n \leq \theta \overline{B} \leq \theta \overline{A}_{n+1}$ implies $\theta \overline{B} \cong \theta \overline{A}_n$ or $\theta \overline{B} \cong \theta A_{n+1}$. The result follows by complementation.

Lemma 4.8. Let S be any infinite set $\subseteq N$ such that $K \leq_T S$. If f and g are acceptable index functions which determine the same S-sequence of 1-degrees, then f = g.

Proof. Assume $f \neq g$. Then $f(k) \neq g(k)$ for some $k \in \mathbb{N}$. Let n be the least such k. It will suffice to show that $\theta A_{\sigma(n,f)}^{S} \not= \theta A_{\sigma(n,g)}^{S}$.

Case 1. n = 0. Since f, g are a.i.f.'s, $f(0) \in \{0, \overline{0}\}$ and $g(0) \in \{0, \overline{0}\}$; since $f(0) \neq g(0)$, assume f(0) = 0 and $g(0) = \overline{0}$. Then, $\theta A_{\sigma(0,f)}^S = X_0^S$ and $\theta A_{\sigma(0,g)}^S = X_0^S$, and, by Lemma 1.11, $X_0^S \neq X_0^S$.

Case 2. n=m+1 for some $m \ge 0$. Then since n is the least k such that $f(k) \ne g(k)$, $\sigma(m, f) = \sigma(m, g)$; let τ denote this common index sequence. Then $\sigma(n, f) = \sigma(m, f) * f(m+1) = \tau i$ and $\sigma(n, g) = \sigma(m, g) * g(m+1) = \tau j$ where $i \ne j$ by hypothesis. Since f, g are a.i.f.'s, $\tau i \in \mathcal{C}$ and $\tau j \in \mathcal{C}$. Then by Lemma 2.15, $\theta A_{\sigma(n,f)} = X_{\tau i}^S \ne X_{\tau j}^S = \theta A_{\sigma(n,g)}^S$.

Theorem 4.9. Let S be any set such that $K \not\leq_T S$. Then the 1-degrees of θA_0^S and $\overline{\theta A_0^S}$ are at the bottom of c discrete ω -sequences of 1-degrees. If $S \neq N$, these sequences are contained in the bounded truth-table degree of θA_0^S .

Proof. Case 1. S is finite or S = N. Then S is co-r.e., so the result follows from Theorem 4.6.

Case 2. S is infinite, $S \subseteq N$. By Remark 1, there are c acceptable index functions such that f(0) = 0, and c such that $f(0) = \overline{0}$. By Lemma 4.8, these functions determine different S-sequences of 1-degrees. By Theorem 4.7, these sequences are discrete are contained in the btt-degree of θA_0^S .

Definition 4.10. For any set P, let

- (a) $P' = \{x \mid x \in W_{r}^{P}\},\$
- (b) $P_0 = \{\langle u, v \rangle | D_u \subseteq P \text{ and } D_v \subseteq \overline{P} \},$
- (c) $P^* = X_{\overline{0}}^{\overline{P_0}} = \{x \mid W_x \cap P_0 \neq \emptyset\}.$

Lemma 4.11. For all sets P, $P \leq P_0$ and $P_0 \leq_{tt} P$.

Proof. Let $D_0 = \emptyset$ and let g(n) be a recursive function such that $D_{g(n)} = \{n\}$ for each n. Then $P \leq P_0$ via $b(n) = \langle g(n), 0 \rangle$. It is easily seen that $P_0 \leq_{tt} P$ via (unbounded) truth-tables.

Lemma 4.12. For all sets $P, P' \cong P^*$.

Proof. P^* is r.e. in P, which implies $P^* \leq P'$. Let g(x) be a recursive function defined by $W_{g(x)} = \{(u, v) | (\exists y) ((x, y, u, v) \in W_{\rho(x)})\}$ where $\rho(x)$ is as in [6, p. 132]. It is easily verified that $P' \leq P^*$ via g.

Lemma 4.13. Let a be any Turing degree such that $0' \le a$. Then there exists a set P such that

- (a) P is not r.e,
- (b) $K \not\leq_T P$,
- (c) $P' \in \mathbf{a}$.

Proof. Assume $0' \le a$.

Case 1. 0'< a. By Friedberg's Theorem [6, Corollary 13-IX(a)], there exists b such that $b' = b \cup 0' = a$. Clearly $0' \not\leq b$, while $b \leq 0'$ implies a = 0'. So $b \mid 0'$, and any $P \in b$ will satisfy the conditions of the lemma.

Case 2. 0' = a. It is a well-known fact (proved by Friedberg) that there exists d such that 0 < d and d' = 0'; any such d contains a non-r.e. set P, and for such a P, $K \not\leq_T P$.

Lemma 4.14. Let S be any infinite set such that \overline{S} is not r.e. and $K \not\leq_T S$, and let f be any acceptable index function. Then the S-sequence of 1-degrees determined by f does not contain the 1-degree of Z_m or \overline{Z}_m for any $m \geq 0$.

Proof. It must be shown that for all m, n, $X_{\sigma(n,f)}^S \not= Z_m$ or \overline{Z}_m . Since by Theorem 2.7, each Z_m , $\overline{Z}_m \cong Y_\tau$ for some $\tau \in \mathcal{C}$, it suffices to show that $X_\sigma^S \not= Y_\tau$ for any σ , $\tau \in \mathcal{C}$.

Case 1. $l_{\sigma} < l_{\tau}$. Then by Lemma 2.4, $Y_{\overline{\sigma}} < Y_{\tau}$, so $X_{\sigma}^{S} \cong Y_{\tau}$ implies $Y_{\overline{\sigma}} < X_{\sigma}^{S}$, contradicting Lemma 2.13.

Case 2. $l_{\sigma} > l_{\tau}$. Then by Lemma 2.4, $Y_{\tau} < Y_{\sigma}$, and by Lemma 2.11, $Y_{\sigma} < X_{\sigma}^{S}$. So $Y_{\tau} < X_{\sigma}^{S}$ which implies $X_{\sigma}^{S} \not= Y_{\tau}$.

Case 3. $l_{\sigma} = l_{\tau}$. Assume $X_{\sigma}^{S} \cong Y_{\tau}$. By Lemma 2.4(a), $Y_{\tau} \cong Z_{l_{\tau}-1}$ or $\overline{Z}_{l_{\tau}-1}$, so $X_{\sigma}^{S} \cong Z_{l_{\tau}-1}$ or $\overline{Z}_{l_{\sigma}-1}$. Also by Lemma 2.4(a), $Y_{\sigma} \cong Z_{l_{\sigma}-1}$ or $\overline{Z}_{l_{\sigma}-1}$ and, since $l_{\sigma} = l_{\tau}$, $Z_{l_{\sigma}-1} = Z_{l_{\tau}-1}$. It follows that $X_{\sigma}^{S} \cong Y_{\sigma}$ or \overline{Y}_{σ} . But, by Lemma 2.11, $Y_{\sigma} < X_{\sigma}^{S}$ and, by Lemma 2.13, $\overline{Y}_{\sigma} = Y_{\overline{\sigma}} \not\leq X_{\sigma}^{S}$. Thus either way we get a contradiction.

Theorem 4.15. Let a be any Turing degree such that $0' \le a$. Then a contains c discrete ω -sequence of 1-degrees, none of whose elements are 1-degrees of Z_m or \overline{Z}_m for any m.

Proof. Assume $\mathbf{a} \geq \mathbf{0}'$. By Lemma 4.13, there is a set P such that P is not r.e., $K \leq_T P$ and $P' \in \mathbf{a}$. Now by Lemma 4.12, $P^* = X_0^{\frac{P_0}{0}} \cong P'$, so $X_0^{\frac{P_0}{0}} \in \mathbf{a}$. By Lemma 4.11, $P \leq P_0$ and $P_0 \leq_T P$. It follows that P not r.e. $\to P_0$ not r.e., and that $K \not\leq_T P \to K \leq_T P_0$. The bounded truth-table degree of $\theta A_0^{\frac{P_0}{0}}$ is then contained in \mathbf{a} , so that by Theorem 4.9, a contains \mathbf{c} discrete ω -sequences of 1-degrees and by Lemma 4.14, these ω -sequences do not contain the 1-degree of Z_m or \overline{Z}_m for any m.

In [3] it was conjectured that for each $m \ge 0$, there exists a class A with $Z_m < \theta A$ and $\overline{Z}_m \not \le \theta A$. The present technique yields the following stronger result:

Theorem 4.16. Every Turing degree $a \ge 0'$ contains a discrete ω -sequence $\{\theta A_m\}_{m \ge 0}$ of index sets such that, for each m, $Z_m < \theta A_m$ and $\overline{Z_m} \not \le \theta A_m$.

Proof. Assume $\mathbf{a} \geq \mathbf{0}'$, and let P_0 be as in Theorem 4.15, i.e., P_0 is not r.e., $K \not\leq_T P_0$ and $X_0 \in \mathbf{a}$. By Lemma 3.4, there exists an acceptable index

function f such that, for all $m \ge 0$, $Z_m \cong Y_{\sigma(m,f)}$. Let $A_m = A_{\sigma(m,f)}^{P_0}$. Then by Theorem 4.7, $\{\theta A_m\}_{m \ge 0}$ is a discrete ω -sequence of index sets contained in a; for each m, $Z_m \cong Y_{\sigma(m,f)} < \theta A_{\sigma(m,f)}^{\overline{P_0}} = \theta A_m$, by Lemma 2.11; and $\overline{Z}_m \cong Y_{\overline{\sigma}(m,f)} \not \le \theta A_{\sigma(m,f)}^{\overline{P_0}} = \theta A_m$, by Lemma 2.13.

REFERENCES

- 1. J. C. E. Dekker and J. Myhill, Some theorems on classes of recursively enumerable sets, Trans. Amer. Math. Soc. 89 (1958), 25-59. MR 20 #3780.
- 2. Y. L. Eršov, A hierarchy of sets. I, Algebra i Logika 7 (1968), 47-74 = Algebra and Logic 7 (1968), 25-43. MR 42 #579 4.
- 3. L. Hay, A discrete chain of degrees of index sets, J. Symbolic Logic 37 (1972), 139-149.
- 4. ____, Index sets of finite classes of recursively enumerable sets, J. Symbolic Logic 34 (1969), 39-44. MR 40 #4103.
 - 5. L. Hay, A non-initial segment of index sets (to appear).
- 6. J. Myhill, Creative sets, Math. Logik Grundlagen Math. 1 (1955), 97-108. MR 17, 118.
- 7. H. Rogers, Jr., Theory of recursive functions and effective computability, McGraw-Hill, New York, 1967. MR 37 #61.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS AT CHICAGO CIRCLE, CHICAGO, ILLINOIS 60680